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1      Introduction 

In an age where human and AI interaction is becoming increasingly more prevalent, the ability to accurately 

detect and classify human emotion is crucial. Although the problem of classifying emotion has been closely 
studied, few have attempted to classify emotion given only audio information. The goal of this work is to build 

an emotion classification system that can be used to classify the underlying emotion present in audio recordings 

from the recently published RAVDESS dataset. Namely, our goal is to achieve a 70% test accuracy with our 
best model. The justification for a seemingly low benchmark is that we believe the problem of classifying 

emotion is inherently subjective, since how one perceives emotion varies from person to person. The emotion 

labels we use are happy, sad, angry, fearful, disgusted, and surprised; these 6 emotions are commonly referred 
to as the 6 universal emotions. [1] Specifically, we use Linear SVM as the baseline model for the system, and 

we extend the Linear SVM model to include an RBF Kernel.  

 

We hypothesize that the SVM with RBF Kernel will outperform the Linear SVM model in test performance. 
We believe that this is likely due to the kernel trick being able to map our feature data into an infinite dimensional 

space where it can find a better separating line for our data. Due to the close resemblance of audio files between 

different classes, we hypothesize that the data will not be linearly separable, so we will need to map our data 
into a higher dimensional space to find accurate separating lines. We also hypothesize that the problem of 

classifying emotion is a “deeper” problem than what can be modeled with these SVM classifiers. We believe 

this is because the SVM models will not learn the “subtle” features that can be used to accurately discern one 

emotion from the other. 
 

2 Dataset   
 
The RAVDESS dataset [2] is used to build the emotion classification system. This dataset consists of 7356 

annotated audio and video samples recorded by 24 actors which are labelled as 1 of 8 emotions:  neutral, calm, 

happy, sad, angry, fearful, disgusted or surprised. The samples have 2 levels of emotional intensity (weak or 

strong) and the phrases are either spoken or sung. We use only the 1888 speech and song audio samples that are 

labelled as one of the 6 universal emotions as described above. i.e.) we do not use the calm and neutral samples. 

3 Data Preparation 

3.1   Data Trimming 

For each audio wav sample, we convert the wav file into a time series at a sampling rate of 16000 Hz using the 

Librosa library [3]. We first trim each audio sample to the same length. From inspection, we find that most of 

the speech clips contain about 2s of non-silent audio (from 1-3s in the audio clip), whereas most of the song 

clips contain about 3s of non-silent audio (from 1-4s in the audio clip), as seen in Figure 1. Originally, we 

trimmed each audio sample to 2.5s (0.75-3.25s. for speech, and 1.25-3.75s for song) but this led to fairly severe 

information loss with the song samples, as the ends of the samples were not being fully captured. As a second 

approach, we trim each audio sample to 3s (0.5-3.5s for the speech samples, and 1-4s for the song samples), 

with the trade-off that a higher proportion of each time series is “zeroed-out”. With the ladder approach, we 

witness an improved test performance.  

 

 

 

 

 
                                 Figure 1: Time series visualization for a song and speech sample. 
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3.2   Feature Extraction: MFCCs 

For feature extraction, the Mel-Frequency Cepstrum Coefficients (MFCCs) are extracted from each trimmed 

time series representation. MFCCs are a common feature representation used for audio classification purposes, 
and are used in other audio classification tasks, namely in [4] and [5]. The MFCCs provide a data representation 

that is sensitive in a way similar to how human perceive sound; they also have the added benefit of reducing the 

feature space from 3*16000 = 48000 to 3877 dimensions. As explained in [6], we first split the time series 

𝑠(𝑛) into a series of overlapping frames 𝑠𝑗(𝑛) and convert each frame into the frequency domain using the 

Discrete Fourier Transform (DFT) over a hamming window ℎ(𝑛): 

𝑆𝑗(𝑘) =  ∑ 𝑠𝑗(𝑛)ℎ(𝑛)𝑒−2𝜋𝑖𝑘𝑛/𝑁        𝑘 =  1,2, … , 𝐾

𝑁

𝑛=1

 

where 𝑠𝑗(𝑛) represents the 𝑗𝑡ℎ frame of the audio signal, 𝑁 is the number of data samples per frame, and 𝐾 is 

the size of the DFT. We pass the periodogram estimate of this frequency representation through a human-
perceptual Mel-filterbank. We then take the logarithm of the filterbank energies, since humans hear loudness 

on a more logarithmic scale. Finally, the logarithm filterbank energies are passed through a Discrete Cosine 

Transform (DCT) to decorrelate the frequencies in each mel-filterbank, and the first 13 coefficients of the DCT 
are the “Mel-Frequency Cepstrum Coefficients” extracted from each frame of the sample. A heat map of the 

MFCC features are shown in Figure 3. We use the python_speech_features library [7] to implement the MFCCs.  

 
 

 

 

 
 

3.3   Data Preprocessing 

We create a randomized balanced train and test set with an 80/20 train/test split. Once we obtain the MFCC 

features for each audio sample, we flatten the MFCC features of each sample into a Dx1 feature vector. We then 

create a feature matrix of size N x D, where N is the number of samples, and D is the number of MFCC features 

for one sample. We normalize our MFCC features along each of the D dimensions. The SVM with RBF 

classifier includes a PCA reduction to 200 dimensions, so that the training set size to feature dimension ratio is 

more in proportion. i.e.) from about 1:2 to 10:1. 

4 Methods 

4.1   Linear Support Vector Machine 

The baseline model is a Linear SVM classifier. We extend the binary SVM algorithm learned in class to a 

multiclass, one-versus-all soft-margin classifier. We also include an L2 regularization term to mitigate the 

effects of overfitting, with 𝛼 = 0.0001. That is, as suggested in [8], we find: 

min
𝑊,𝑏
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where 𝑤𝑘 are the coefficients for the decision function of class 𝑘, and 𝑥𝑖   is the 𝑖th training sample with label 𝑦𝑖. 

For one-versus-all classification, a binary classifier is learned for each of the 6 classes to discriminate between 

the other 5 classes. We initialize the coefficient matrix 𝑊 and intercept matrix 𝑏 to small uniformly random 

numbers in the range [−0.001, 0.001]. We set aside 10% of the training set for validation to ensure that our 

model was not overfitting; concretely, our model terminates training when the validation score has not improved 

by at least tol=1e-5 for 5 consecutive epochs. We used a learning rate of 1e-4, and we implemented this using 

scikit-learn. [9] 

Figure 2: An MFCC heat map where cooler regions correspond to higher energies; the 299 overlapping frames 

signal are stacked along the x-axis, and the 13 MFCC coefficients for each frame are stacked along the y-axis. 



4.2   Support Vector Machine with Radial Basis Function Kernel (SVM-RBF) 

For our next approach, we train a multiclass one-versus-one SVM classifier with a Radial Basis Function (RBF) 

Kernel. In a one-versus-one scheme, 6*(6-1) / 2 = 15 binary SVM-RBF classifiers are constructed. For a sample 
at prediction time, the class with the most positive predictions from the classifiers is the class labelling assigned 

to that sample. The RBF kernel projects our data onto an infinite dimensional space, where the classifier can 

find a more complex decision boundary between the classes. The RBF kernel represents similarity as a decaying 

function of the distance between two vectors 𝑥 and 𝑥′ as follows: 

𝐾(𝑥, 𝑥′) =  𝑒−𝛾‖𝑥−𝑥′‖
2

 

where the variable 𝛾 is a hyperparameter. Empirically, we find that 𝛾 = 0.0003 and penalty parameter 𝐶 = 10 

produced the best results. This is implemented using scikit-learn [9]. 
 

5 Results and Discussion 

We average our results over 10 runs of each algorithm and have listed our train and test accuracy results in 

Table 1 below. The confusion matrix in Figure 3 details our test results with the SVM-RBF classifier.  Our 

results show that the MFCC extracted features, the use of the kernel trick, and the emotional intensity of our 

samples have a significant impact on our classification accuracies. At test time, we find that MFCC features 

significantly outperform the raw time series features. For the Linear SVM model we have an average test 

accuracy of 54.5% and we are unable to achieve a train accuracy of 100%, which suggests that the data is not 

linearly separable. Therefore, we use the kernel trick with an RBF Kernel to map our MFCC data onto a linearly 

separable space, from which we can use SVM. The SVM-RBF model show a training accuracy of 100% and an 

improved test accuracy of 76.2%. Furthermore, our results show that the emotional intensity of a sample have 

a significant impact on test accuracy; namely, with the SVM-RBF model at test time, samples labelled as having 

“strong” emotional intensity are correctly classified 12% more often than samples labelled as having “weak” 

emotional intensity. The results in Table 1 also suggest that the model is overfitting quite significantly; no matter 

how we tuned our model, the overfitting was unavoidable. We believe this is due to the model not learning the 

deeper and more subtle features that can be used to better discern one emotion from the other. 

 

 

 

 

 

 

 

6 Conclusions and Future Work 

Our hypothesis that the SVM with RBF Kernel model would outperform the Linear SVM model is confirmed 

by our results in Table 1. We well-exceeded our initial goal to achieve a 70% test accuracy with our best model, 

in that with our SVM-RBF model, we were able to achieve a 76.2% test performance. The subtleties between 

audio segments with different underlying emotions are extremely hard to distinguish, and so we have concluded 

that to accurately discern one emotion from the other, it would require a “deeper” method than what can be 

modeled with these simple machine learning algorithms. Another note about the misclassifications is that the 

weak-intensity samples are misclassified at a significantly higher rate than strong-intensity samples, which also 

indicates the need for a method to distinguish the more subtle components of emotion. With more time, a 

Convolutional Neural Network (CNN) would be constructed to learn the subtleties that truly discern one 

emotion from the other, which would hopefully lead to an improved test performance. 

Figure 3: Confusion matrix of test results          Table 1:  Train/ Test Accuracy Results 
           for SVM with RBF Model 
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