
A Machine Learning Approach to Emotion Classification

1 Introduction

In an age where human and AI interaction is becoming increasingly more prevalent, the ability to accurately

detect and classify human emotion is crucial. Although the problem of classifying emotion has been closely
studied, few have attempted to classify emotion given only audio information. The goal of this work is to build

an emotion classification system that can be used to classify the underlying emotion present in audio recordings

from the recently published RAVDESS dataset. Namely, our goal is to achieve a 70% test accuracy with our
best model. The justification for a seemingly low benchmark is that we believe the problem of classifying

emotion is inherently subjective, since how one perceives emotion varies from person to person. The emotion

labels we use are happy, sad, angry, fearful, disgusted, and surprised; these 6 emotions are commonly referred
to as the 6 universal emotions. [1] Specifically, we use Linear SVM as the baseline model for the system, and

we extend the Linear SVM model to include an RBF Kernel.

We hypothesize that the SVM with RBF Kernel will outperform the Linear SVM model in test performance.
We believe that this is likely due to the kernel trick being able to map our feature data into an infinite dimensional

space where it can find a better separating line for our data. Due to the close resemblance of audio files between

different classes, we hypothesize that the data will not be linearly separable, so we will need to map our data
into a higher dimensional space to find accurate separating lines. We also hypothesize that the problem of

classifying emotion is a “deeper” problem than what can be modeled with these SVM classifiers. We believe

this is because the SVM models will not learn the “subtle” features that can be used to accurately discern one

emotion from the other.

2 Dataset

The RAVDESS dataset [2] is used to build the emotion classification system. This dataset consists of 7356

annotated audio and video samples recorded by 24 actors which are labelled as 1 of 8 emotions: neutral, calm,

happy, sad, angry, fearful, disgusted or surprised. The samples have 2 levels of emotional intensity (weak or

strong) and the phrases are either spoken or sung. We use only the 1888 speech and song audio samples that are

labelled as one of the 6 universal emotions as described above. i.e.) we do not use the calm and neutral samples.

3 Data Preparation

3.1 Data Trimming

For each audio wav sample, we convert the wav file into a time series at a sampling rate of 16000 Hz using the

Librosa library [3]. We first trim each audio sample to the same length. From inspection, we find that most of

the speech clips contain about 2s of non-silent audio (from 1-3s in the audio clip), whereas most of the song

clips contain about 3s of non-silent audio (from 1-4s in the audio clip), as seen in Figure 1. Originally, we

trimmed each audio sample to 2.5s (0.75-3.25s. for speech, and 1.25-3.75s for song) but this led to fairly severe

information loss with the song samples, as the ends of the samples were not being fully captured. As a second

approach, we trim each audio sample to 3s (0.5-3.5s for the speech samples, and 1-4s for the song samples),

with the trade-off that a higher proportion of each time series is “zeroed-out”. With the ladder approach, we

witness an improved test performance.

 Figure 1: Time series visualization for a song and speech sample.

 Luke Rowe Muhammad Ali Ryley Woodland

 lukerowe@uvic.ca m.asim.a.seng@gmail.com wryley3845@gmail.com

mailto:lukerowe@uvic.ca
mailto:m.asim.a.seng@gmail.com

3.2 Feature Extraction: MFCCs

For feature extraction, the Mel-Frequency Cepstrum Coefficients (MFCCs) are extracted from each trimmed

time series representation. MFCCs are a common feature representation used for audio classification purposes,
and are used in other audio classification tasks, namely in [4] and [5]. The MFCCs provide a data representation

that is sensitive in a way similar to how human perceive sound; they also have the added benefit of reducing the

feature space from 3*16000 = 48000 to 3877 dimensions. As explained in [6], we first split the time series

𝑠(𝑛) into a series of overlapping frames 𝑠𝑗(𝑛) and convert each frame into the frequency domain using the

Discrete Fourier Transform (DFT) over a hamming window ℎ(𝑛):

𝑆𝑗(𝑘) = ∑ 𝑠𝑗(𝑛)ℎ(𝑛)𝑒−2𝜋𝑖𝑘𝑛/𝑁 𝑘 = 1,2, … , 𝐾

𝑁

𝑛=1

where 𝑠𝑗(𝑛) represents the 𝑗𝑡ℎ frame of the audio signal, 𝑁 is the number of data samples per frame, and 𝐾 is

the size of the DFT. We pass the periodogram estimate of this frequency representation through a human-
perceptual Mel-filterbank. We then take the logarithm of the filterbank energies, since humans hear loudness

on a more logarithmic scale. Finally, the logarithm filterbank energies are passed through a Discrete Cosine

Transform (DCT) to decorrelate the frequencies in each mel-filterbank, and the first 13 coefficients of the DCT
are the “Mel-Frequency Cepstrum Coefficients” extracted from each frame of the sample. A heat map of the

MFCC features are shown in Figure 3. We use the python_speech_features library [7] to implement the MFCCs.

3.3 Data Preprocessing

We create a randomized balanced train and test set with an 80/20 train/test split. Once we obtain the MFCC

features for each audio sample, we flatten the MFCC features of each sample into a Dx1 feature vector. We then

create a feature matrix of size N x D, where N is the number of samples, and D is the number of MFCC features

for one sample. We normalize our MFCC features along each of the D dimensions. The SVM with RBF

classifier includes a PCA reduction to 200 dimensions, so that the training set size to feature dimension ratio is

more in proportion. i.e.) from about 1:2 to 10:1.

4 Methods

4.1 Linear Support Vector Machine

The baseline model is a Linear SVM classifier. We extend the binary SVM algorithm learned in class to a

multiclass, one-versus-all soft-margin classifier. We also include an L2 regularization term to mitigate the

effects of overfitting, with 𝛼 = 0.0001. That is, as suggested in [8], we find:

min
𝑊,𝑏

1

2
∑‖𝑤𝑘‖2 + ∑ max {0, max

𝑗 ≠ 𝑦𝑖

(𝑤𝑗
𝑇𝑥𝑖 + 𝑏𝑗) − (𝑤𝑦𝑖

𝑇 𝑥𝑖 + 𝑏𝑦𝑖
) + 1 }

𝑁

𝑖=1

6

𝑘=1

where 𝑤𝑘 are the coefficients for the decision function of class 𝑘, and 𝑥𝑖 is the 𝑖th training sample with label 𝑦𝑖.

For one-versus-all classification, a binary classifier is learned for each of the 6 classes to discriminate between

the other 5 classes. We initialize the coefficient matrix 𝑊 and intercept matrix 𝑏 to small uniformly random

numbers in the range [−0.001, 0.001]. We set aside 10% of the training set for validation to ensure that our

model was not overfitting; concretely, our model terminates training when the validation score has not improved

by at least tol=1e-5 for 5 consecutive epochs. We used a learning rate of 1e-4, and we implemented this using

scikit-learn. [9]

Figure 2: An MFCC heat map where cooler regions correspond to higher energies; the 299 overlapping frames

signal are stacked along the x-axis, and the 13 MFCC coefficients for each frame are stacked along the y-axis.

4.2 Support Vector Machine with Radial Basis Function Kernel (SVM-RBF)

For our next approach, we train a multiclass one-versus-one SVM classifier with a Radial Basis Function (RBF)

Kernel. In a one-versus-one scheme, 6*(6-1) / 2 = 15 binary SVM-RBF classifiers are constructed. For a sample
at prediction time, the class with the most positive predictions from the classifiers is the class labelling assigned

to that sample. The RBF kernel projects our data onto an infinite dimensional space, where the classifier can

find a more complex decision boundary between the classes. The RBF kernel represents similarity as a decaying

function of the distance between two vectors 𝑥 and 𝑥′ as follows:

𝐾(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥′‖
2

where the variable 𝛾 is a hyperparameter. Empirically, we find that 𝛾 = 0.0003 and penalty parameter 𝐶 = 10

produced the best results. This is implemented using scikit-learn [9].

5 Results and Discussion

We average our results over 10 runs of each algorithm and have listed our train and test accuracy results in

Table 1 below. The confusion matrix in Figure 3 details our test results with the SVM-RBF classifier. Our

results show that the MFCC extracted features, the use of the kernel trick, and the emotional intensity of our

samples have a significant impact on our classification accuracies. At test time, we find that MFCC features

significantly outperform the raw time series features. For the Linear SVM model we have an average test

accuracy of 54.5% and we are unable to achieve a train accuracy of 100%, which suggests that the data is not

linearly separable. Therefore, we use the kernel trick with an RBF Kernel to map our MFCC data onto a linearly

separable space, from which we can use SVM. The SVM-RBF model show a training accuracy of 100% and an

improved test accuracy of 76.2%. Furthermore, our results show that the emotional intensity of a sample have

a significant impact on test accuracy; namely, with the SVM-RBF model at test time, samples labelled as having

“strong” emotional intensity are correctly classified 12% more often than samples labelled as having “weak”

emotional intensity. The results in Table 1 also suggest that the model is overfitting quite significantly; no matter

how we tuned our model, the overfitting was unavoidable. We believe this is due to the model not learning the

deeper and more subtle features that can be used to better discern one emotion from the other.

6 Conclusions and Future Work

Our hypothesis that the SVM with RBF Kernel model would outperform the Linear SVM model is confirmed

by our results in Table 1. We well-exceeded our initial goal to achieve a 70% test accuracy with our best model,

in that with our SVM-RBF model, we were able to achieve a 76.2% test performance. The subtleties between

audio segments with different underlying emotions are extremely hard to distinguish, and so we have concluded

that to accurately discern one emotion from the other, it would require a “deeper” method than what can be

modeled with these simple machine learning algorithms. Another note about the misclassifications is that the

weak-intensity samples are misclassified at a significantly higher rate than strong-intensity samples, which also

indicates the need for a method to distinguish the more subtle components of emotion. With more time, a

Convolutional Neural Network (CNN) would be constructed to learn the subtleties that truly discern one

emotion from the other, which would hopefully lead to an improved test performance.

Figure 3: Confusion matrix of test results Table 1: Train/ Test Accuracy Results
 for SVM with RBF Model

References

[1] P. Ekman, “An argument for basic emotions,” in Cogn Emot. 6, 169-200. 1992.

[2] S. Livingstone, “The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A

dynamic, multimodal set of facial and vocal expressions in North American English”, journals.plos.org,

May 16, 2018. [Online] Available: https://doi.org/10.1371/journal.pone.0196391. [Accessed: Mar. 9,

2019]

[3] B. McFee , C. Raffel, D. Liang, D. Ellis, M. McVicar, E. Battenbergk, O. Nieto, “librosa: Audio and Music

Signal Analysis in Python”, in PROC. OF THE 14th PYTHON IN SCIENCE CONF., 2015.

[4] G. Tzanetakis and P. Cook, “Musical Genre Classification of Audio Signals” in IEEE Transactions

on Speech and Audio Processing. July 2002.

[5] B. Uzkent, B. Barkana and H. Cevikalp, “Non-speech environmental sound classification using SVMs

with a new set of features”, in International journal of innovative computing, information & control:

IJICIC, 8(5), May, 2012.

[6] Practical Cryptography, “Mel Frequency Cepstral Coefficient (MFCC) Tutorial,”

practicalcryptography.com. [Online]. Available:

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-

coefficients-mfccs/. [Accessed: Mar. 7, 2019].

[7] J. Lyons, “Welcome to python_speech_features’s documentation!” python-speech-

features.readthedocs.io, 2013. [Online]. Available: https://python-speech-

features.readthedocs.io/en/latest/. [Accessed: Mar. 10, 2019].

[8] P. Felzenszwalh, “CS142: Machine Learning Lecture 11,” 2017. [Online] Available:

http://cs.brown.edu/people/pfelzens/engn2520/CS1420_Lecture_11.pdf. [Accessed: Mar. 15, 2019].

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.

Duchesnay. “Scikit-learn: Machine learning in Python,” in Journal of Machine learning Research,

12:2025-2830, 2011.

https://doi.org/10.1371/journal.pone.0196391
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://python-speech-features.readthedocs.io/en/latest/
https://python-speech-features.readthedocs.io/en/latest/
http://cs.brown.edu/people/pfelzens/engn2520/CS1420_Lecture_11.pdf

